Introduction To OSI
Virtually all networks in use today are based in some fashion on the Open Systems Interconnection (OSI) standard. OSI was developed in 1984 by the International Organization for Standardization (ISO), a global federation of national standards organizations representing approximately 130 countries. The core of this standard is the OSI Reference Model, a set of seven layers that define the different stages that data must go through to travel from one device to another over a network. In this article, you'll find out all about the OSI standard.
Protocol Stacks
A protocol stack is a group of protocols that all work together to allow software or hardware to perform a function. The TCP/IP protocol stack is a good example. It uses four layers that map to the OSI model as follows:
Layer 1:
Network Interface - This layer combines the Physical and Data layers and routes the data between devices on the same network. It also manages the exchange of data between the network and other devices.
Layer 2:
Internet - This layer corresponds to the Network layer. The Internet Protocol (IP) uses the IP address, consisting of a Network Identifier and a Host Identifier, to determine the address of the device it is communicating with.
Layer 3:
Transport - Corresponding to the OSI Transport layer, this is the part of the protocol stack where the Transport Control Protocol (TCP) can be found. TCP works by asking another device on the network if it is willing to accept information from the local device.
Layer 4:
Application - Layer 4 combines the Session, Presentation and Application layers of the OSI model. Protocols for specific functions such as e-mail (Simple Mail Transfer Protocol, SMTP) and file transfer (File Transfer Protocol, FTP) reside at this level. As you can see, it is not necessary to develop a separate layer for each and every function outlined in the OSI Reference Model. But developers are able to ensure that a certain level of compatibility is maintained by following the general guidelines provided by the model.
Ethernet Basics
Ethernet is a local area technology, with networks traditionally operating within a single building, connecting devices in close proximity. At most, Ethernet devices could have only a few hundred meters of cable between them, making it impractical to connect geographically dispersed locations. Modern advancements have increased these distances considerably, allowing Ethernet networks to span tens of kilometers. Protocols In networking, the term protocol refers to a set of rules that govern communications. Protocols are to computers what language is to humans. Since this article is in English, to understand it you must be able to read English. Similarly, for two devices on a network to successfully communicate, they must both understand the same protocols.
Ethernet Terminology
Ethernet follows a simple set of rules that govern its basic operation. To better understand these rules, it is important to understand the basics of Ethernet terminology.
Medium - Ethernet devices attach to a common medium that provides a path along which the electronic signals will travel. Historically, this medium has been coaxial copper cable, but today it is more commonly a twisted pair or fiber optic cabling.
Segment - We refer to a single shared medium as an Ethernet segment.
Node - Devices that attach to that segment are stations or nodes.
Frame - The nodes communicate in short messages called frames, which are variably sized chunks of information. Frames are analogous to sentences in human language. In English, we have rules for constructing our sentences: We know that each sentence must contain a subject and a predicate. The Ethernet protocol specifies a set of rules for constructing frames. There are explicit minimum and maximum lengths for frames, and a set of required pieces of information that must appear in the frame. Each frame must include, for example, both a destination address and a source address, which identify the recipient and the sender of the message. The address uniquely identifies the node, just as a name identifies a particular person. No two Ethernet devices should ever have the same address.
Bridges
To alleviate problems with segmentation, Ethernet networks implemented bridges. Bridges connect two or more network segments, increasing the network diameter as a repeater does, but bridges also help regulate traffic. They can send and receive transmissions just like any other node, but they do not function the same as a normal node. The bridge does not originate any traffic of its own; like a repeater, it only echoes what it hears from other stations. One goal of the bridge is to reduce unnecessary traffic on both segments. It does this by examining the destination address of the frame before deciding how to handle it.
Area Networks
Networks can be categorized in several different ways. One approach defines the type of network according to the geographic area it spans. Local area networks (LANs), for example, typically reach across a single home, whereas wide area networks (WANs), reach across cities, states, or even across the world. The Internet is the world's largest public WAN.
Network Design
Computer networks also differ in their design. The two types of high-level network design are called client-server and peer-to-peer. Client-server networks feature centralized server computers that store email, Web pages, files and or applications. On a peer-to-peer network, conversely, all computers tend to support the same functions. Client-server networks are much more common in business and peer-to-peer networks much more common in homes.
Thursday, February 21, 2008
NETWORKING
Labels:
NETWORKING
Subscribe to:
Post Comments (Atom)

1 comment:
Commendable job done
Keep it up !!!
Post a Comment